Properties of Rotation Matrix

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- 1a. The dot product of any row or column with itself equals one
- Because they are unit vectors

$$
\begin{aligned}
&\left\|\hat{\mathbf{l}}_{x}\right\|^{2}=\left\|\hat{\mathbf{l}}_{y}\right\|^{2}=\left\|\hat{\mathbf{l}}_{z}\right\|^{2}=1 \\
&\left(\|v\|=\sqrt{v \cdot v}=x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

Properties of Rotation Matrix

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- 1b. The dot product of any row with any other row equals zero
- 1c. The dot product of any column with any other column equals zero
- Because they are perpendicular to each other

$$
\hat{\mathbf{l}}_{x} \cdot \hat{\mathbf{l}}_{y}=\hat{\mathbf{l}}_{y} \cdot \hat{\mathrm{l}}_{z}=\hat{\mathbf{l}}_{x} \cdot \hat{\mathbf{l}}_{z}=0
$$

Properties of Rotation Matrix

- From the property $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$,
- A matrix having this property is called an orthogonal matrix
- So, a rotation matrix is an orthogonal matrix
- But it has one more property; its determinant is 1

Determinant of 3x3 Matrix

- There are several ways to calculate a matrix determinant
- For 3x3 matrices, one can use scalar triple product

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\operatorname{det}\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \quad\left(\operatorname{det}\left(A^{\mathrm{T}}\right)=\operatorname{det}(A)\right)
$$

$|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|=$ the volume of the parallelepiped spanned by \mathbf{a}, \mathbf{b}, and \mathbf{c}

See more: https://mathinsight.org/scalar triple product

Determinant of 3x3 Orthogonal Matrix

- If \mathbf{Q} is an orthogonal matrix, $\operatorname{det}(\mathbf{Q})=+1$ or -1
- proof) $1=\operatorname{det}(I)=\operatorname{det}\left(Q^{\mathrm{T}} Q\right)=\operatorname{det}\left(Q^{\mathrm{T}}\right) \operatorname{det}(Q)=(\operatorname{det}(Q))^{2}$.
- $\operatorname{det}(\mathbf{Q})=+1 \rightarrow$ rotation

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- $\operatorname{det}(\mathbf{Q})=-1 \rightarrow$ (rotated) reflection
- Meaning that one axis is "flipped"

Properties of Rotation Matrix

2. $\operatorname{det}(\mathbf{R})=1$

- To sum up, a rotation matrix is an orthogonal matrix with determinant 1
- Sometimes it is called special orthogonal matrix
- A set of rotation matrices of size 3 forms a special orthogonal group, $S O$ (3)

